
A Static Analyzer for Detecting Tensor Shape Errors in Deep
Neural Network Training Code

Ho Young Jhoo
Seoul National University

Seoul, South Korea
hoyoung.jhoo@sf.snu.ac.kr

Sehoon Kim
Seoul National University

Seoul, South Korea
shkim@ropas.snu.ac.kr

Woosung Song
Seoul National University

Seoul, South Korea
lego0901@gmail.com

Kyuyeon Park
Seoul National University

Seoul, South Korea
kypark@ropas.snu.ac.kr

DongKwon Lee
Seoul National University

Seoul, South Korea
dklee@ropas.snu.ac.kr

Kwangkeun Yi
Seoul National University

Seoul, South Korea
kwang@ropas.snu.ac.kr

ABSTRACT
We present an automatic static analyzer PyTea that detects tensor-
shape errors in PyTorch code. The tensor-shape error is critical in
the deep neural net code; much of the training cost and intermedi-
ate results are to be lost once a tensor shape mismatch occurs in
the midst of the training phase. Given the input PyTorch source,
PyTea statically traces every possible execution path, collects tensor
shape constraints required by the tensor operation sequence of the
path, and decides if the constraints are unsatisfiable (hence a shape
error can occur). PyTea’s scalability and precision hinges on the
characteristics of real-world PyTorch applications: the number of
execution paths after PyTea’s conservative pruning rarely explodes
and loops are simple enough to be circumscribed by our symbolic
abstraction. We tested PyTea against the projects in the official
PyTorch repository and some tensor-error code questioned in the
StackOverflow. PyTea successfully detects tensor shape errors in
these codes, each within a few seconds.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
static analysis, error detection, tensor shape mismatch, neural net-
works, SMT solver, Python, PyTorch

1 INTRODUCTION
1.1 Our Goal
Tensor shape mismatch is a critical bug in deep neural network
machine learning applications. Training a neural network is an
expensive process that intends to terminate only when it finishes
processing a huge amount of data through a sequence of tensor
operations. In the middle of this time-consuming training process,
if the shape of an input datum failed to fit with a tensor operation,
the whole process abruptly stops wasting the entire training cost
spent thus far, losing the trained, if any, intermediate result.

Our goal is to automatically predict at compile-time such run-
time tensor-shape mismatch errors in PyTorch neural network
training code.

1.2 Structure of PyTorch Programs
Contemporarymachine learning frameworks such as PyTorch [23],

TensorFlow [8], and Keras [13] use Python APIs to build neural net-
works. Training a neural network with such frameworks is mostly
patterned after a standard procedure which is illustrated in Figure 1.
Typical PyTorch neural network training code can be divided into
four stages. Figure 2 shows a code example, a simplified image clas-
sification code taken from the official PyTorch MNIST classification
example [5]. We first define the series of neural network layers
and make them into a single neural network module. To correctly
assemble the layers, the returned tensor of the former layer must
satisfy the input requirements of the next layer. We will see those
requirements from the next section. The network is instantiated
with some initialization parameters called hyperparameter, e.g., the
number of hidden layers. Next, the input dataset is preprocessed
and adjusted to the requirements of the network. Every dataset
is cut into smaller same-sized chunks (called minibatches) from
this stage. Finally, the main loop starts, and the minibatches are
sequentially fed to the network. One epoch means a single loop
that an entire dataset is passed to the network, and the number
of epochs (datasets) usually differs depending on the purpose and
structure of the neural network. Including the number of epochs,
the numbers of iterations in the training code are determined to
be constants in most cases, except the main training loop which
depends on the size of a dataset.

1.3 Tensor Shape Errors
Figure 3 presents the typical type of tensor shape errors, which

are slight modifications of Figure 2. From the first example, the
second Linear layer (line 8), which multiplies the input with 80×10-
matrix, requires a specific shape of a tensor as an input. The first
layer (line 6), however, returns a wrong-shaped tensor, and the
overall pipeline will malfunction. This kind of error is called tensor
shape mismatch error, simply, shape error.

Shape error is rather hard to manually find, only to be detected
by running the program with an actual input. Indeed, the most
notorious error for machine learning engineers is the error that can
only be occurred after an immense amount of machine-hours.

Figure 3(b) shows another example. Its declaration of training
data loader (line 14) hides a shape error. DataLoader class slices the
dataset sequentially by batch_size and passes it to themodel. If the

Jhoo, et al.

16
162

16
16

Linear (X * 120)

Linear (120 * 120)

Linear (120 * 120)

Linear (120 * Z)

(* Y times)

Define Network Structure

Linear (16 * 120)

Linear (120 * 120)

Linear (120 * 120)

Linear (120 * 10)

X = 16, Y = 3, Z = 10

Linear (120 * 120)

Initialize Model
with Initialization parameters

Dataset

Preprocess Dataset Main Loop

16 16 16 ρ

batch_size = 16
M

Result

16

Epoch 1

Hyperparameters

M
Epoch 1

Dataset
Epoch 10

Epoch 2

Figure 1: Typical structure of neural network training code in PyTorch.

1 ## 1. DEFINE NETWORK STRUCTURE

2 class Net(nn.Module):

3 def __init__(self , out_classes):

4 super(Net , self).__init__ ()

5 self.layers = nn.Sequential(

6 nn.Linear (28 * 28, 120),

7 nn.ReLU(),

8 nn.Linear (120, out_classes)

9)

10

11 def forward(self , x):

12 x = x.reshape(x.shape[0], -1)

13 x = self.layers(x)

14 return x

15

16 ## 2. INITIALIZE MODEL

17 model = Net(out_classes =10)

18

19 ## 3. PREPROCESS DATASET

20 data = dataset.MNIST('./data', train=True ,

21 transform =[ToTensor ()])

22 loader = DataLoader(data , batch_size =16)

23

24 ## 4. RUN MAIN LOOP

25 for epoch in range (10):

26 for batch , label in loader:

27 # model(batch) == model.forward(batch)

28 output = model(batch)

29 loss = F.nll_loss(output , label)

30 loss.backward ()

Figure 2: Basic PyTorch training code.

total length of the dataset is not divisible by batch_size, however,
the size of the residual minibatch will be the non-zero remainder of
the total length. See line 16: because the third parameter drop_last
is missing, the model assumes a consistent batch size (lines 10 and
6) hence the program will crash from the residual minibatch, losing
the whole training hours. The recent massive networks like GPT-
3 [11] require more than hundreds of machine-hours to train. This
type of error must be noticed before its run.

Figure 3(c) illustrates another shape error that can be arisen from
a dataset, not a structure of the model. It does not take input from
the pre-defined MNIST dataset but reads an image from a file. If the
read image is RGB, which has 3×H×W dimensions, it will not fit
into the reshape method that requires a tensor of 28×28-elements.
That means we have to convert it to a monochrome image before

1 class Net(nn.Module):

2 def __init__(self):

3 super(Net , self).__init__ ()

4 self.layers = nn.Sequential(

5 ## 'B' represents batch size

6 ## [B x 784] * [784 x 120] -> [B x 120]

7 nn.Linear (28 * 28, 120),

8 ## [B x 120] -> [B x 120]

9 nn.ReLU(),

10 ## [B x 120] * [80 x 10] -> ERROR!

11 nn.Linear (80, 10))

(a) Error on the network structure.

1 class Net(nn.Module):

2 def __init__(self , batch_size):

3 self.batch_size = batch_size

4 # ...

5 def forward(self , x):

6 x = x.reshape(self.batch_size , -1)

7 # ...

8

9 ## some models may require exact batch size

10 model = Net(batch_size =64)

11

12 ## POTENTIAL_ERROR 1:

13 ## argument 'drop_last=True' is essential

14 loader = DataLoader(data , batch_size =64)

15 # loader = DataLoader(data , batch_size =64,

16 # drop_last=True)

17

18 for epoch in range (10):

19 for batch , label in loader:

20 out = model(batch)

21 ## ERROR ON THE LAST MINIBATCH

22 ## last batch size: 32 (!= 64)

(b) Error on the last minibatch.

1 ## POTENTIAL ERROR 2: channel size can be 3

2 img = PIL.Image.open('./image.png').resize ([28, 28])

3 # img = img.convert('L')

4

5 ## ERROR WHEN THE IMAGE IS RGB.

6 tensor = to_tensor(img).reshape (28 * 28)

7 out = model(tensor)

(c) Insufficient data preprocessing.

Figure 3: Various type of tensor shape errors.

feeding it to the network. Even though it had been successfully
tested with monochrome images, there can be a user who tests it
with an RGB image, crashing the execution of the code.

A Static Analyzer for Detecting Tensor Shape Errors in Deep Neural Network Training Code

Valid

Invalid (with debug info)

Unsolvable
Instantiation

Info

Python w/
PyTorch

PyTea Analyzer
…

lstm(x,(…
linear(fx[…
conv(y,…)
 …

PyTea IR Paths &
Constraints

Input

0 <= x <= 3

1 <= x <= 5

-1 <= x <= 2

Z3
SMT Solver

Constraint
Check

Figure 4: Overall architecture of PyTea.

mat1 = torch.rand(3, 5)
mat2 = torch.rand(5, 7)

mat3 = torch.mm(mat1, mat2)

mat1.rank == 2
mat2.rank == 2
mat1.shape[1] == mat2.shape[0]

Constraint

cond = random.randint(0, 1)

if cond == 1:
 result = 2 * mat1
else:
 result = mat1

return result

PyTorch Code PyTea

0 <= X <= 1

Constraint

X != 1

array = []

for i in range(3):
 array.append(i)

array := []

array.append(2)

return Tensor[3 X 5]

Conservative
Path Pruning

loader = DataLoader(
 dataset,
 batch_size=16)

for x in loader:
 y = network(x)

loader := DataLoader with
 Tensor[X x 32]

x := Tensor[16 x 32]
y := network(x)

x := Tensor[(X % 16) x 32]
y := network(x)

Loop Unrolling for
Constant-bound Loops

Unknown-length
Data Loop

array.append(1)

array.append(0)

X == 1

result :=
 Tensor[3 X 5]

result :=
 Tensor[3 X 5]

Figure 5: Constraint generation example.

Though several works [14, 16, 20, 22, 26] have reported tools to
detect the shape mismatch errors of machine learning libraries, es-
pecially for TensorFlow [8], none of them have presented any static
analysis tool that statically detects the shape errors for realistic
Python ML applications. Real-world machine learning applications
heavily utilize third-party libraries, external datasets, and config-
uration parameters, and handle their controls with subtle branch
conditions and loops, but the existing tools still lack in supporting
some of these elements and thus they fail to analyze even a simple
ML application. To ensure that the shape error will not happen for
any input data, we should statically infer a precise yet conservative
range of each tensor shape and track its transformations through
all possible execution paths.

1 class RandBlock(nn.Module):

2 def __init__(self):

3 super(RandBlock , self).__init__ ()

4 self.layer = nn.Linear (32, 32)

5

6 def forward(self , x):

7 rand_num = random.randint(0, 1)

8

9 if rand_num == 1:

10 result = self.layer(x)

11 else:

12 result = x

13

14 return result

15

16 model = nn.Sequential(

17 [RandBlock () for _ in range (24)])

Figure 6: Path explosion example.

2 OVERVIEW OF PYTEA ANALYZER
To find out shape errors before runtime, we present a static analyzer
PyTea (PyTorch Tensor Error Analyzer). PyTea statically scans Py-
Torch applications and detects possible shape errors. PyTea analyzes
full training and evaluation paths of the real-world Python/PyTorch
applications with additional data processing and mixed usage of
other libraries (e.g., Torchvision [4], NumPy [19], PIL [1])

Figure 4 illustrates the overall architecture of PyTea analyzer. It
first translates the original Python codes into a kernel language,
PyTea Internal Representation (PyTea IR). Then, it tracks every
possible execution path of the translated IR and collects the con-
straints regarding tensor shapes that dictate the conditions for the
code to run without a shape error. The collected constraint sets
are given to Satisfiability Modulo Theories (SMT) solver Z3 [15] to
judge that those constraints are satisfiable for every possible input
shape. Following the result of the solver, PyTea concludes which
path contains a shape error or not. If the constraint-solving by Z3
takes too much time, PyTea stops and tells "don’t know".

2.1 Assumptions
Given the typical structure of PyTorch neural network training
code (Section 1.2), we assume for the PyTea’s input the followings
about the PyTorch deep neural network training code:

A1 Other than the training or evaluation dataset, every input
value required to execute the code is injected by command-
line arguments.

Jhoo, et al.

A2 There is no infinite loop and recursion. We assume that
every loop bound except for the datasets will be fixed to a
constant.

A3 The unknown loop bound for the datasets is only for the
size of each dataset in an epoch, and every iteration is either
with a fixed-sized minibatch of the dataset or with a smaller,
residual minibatch.

A4 We assume that string-manipulation expressions have no
effect on tensor shapes.

These assumptions are based on our observations that most
PyTorch networks and codes can be statically determined to fixed
structures once we give precise command-line arguments. Real-
world PyTorch applications mostly construct their structures by
command-line arguments or external configuration files like JSON
files. Therefore, PyTea chooses to analyze programs only with exact
command-line arguments.

For a few networks that are not resolved to a single fixed struc-
ture, we consider all possible structures. The number of the possible
structures is to be controlled by our path-pruning technique, and
sometimes, for an inevitable case, by timeout.

2.2 Handling path explosions
The number of possible paths is exponential to the number of
branches in sequence. For some complex neural networks, such path
explosion is possible. For example, Neural Architecture Search [28]
or Networks with Stochastic Depth [21] have branches inside the
network themselves. Figure 6 shows a representative path explosion
case that utilizes a runtime random variable. We can notice that
the feed-forward function (forward(self, x)) has two execution
paths in its body. The final structure of the network is made with
24 same blocks (line 17), which makes 16M paths.

We handle this exponential cost blow-up by means of conser-
vative path-pruning and simple-minded timeouts. If we can find
that the result of the binding scope of that feed-forward function is
pure (i.e., do not change any global value), and its bounded value is
indeed equal for every path and not related with the branch condi-
tions, we then safely ignore other paths except for one. If a path
explosion arises even if using this method, we then use a timeout.
See Section 3.2.3 for more details.

2.3 Handling Loops
For the loops in typical PyTorch neural network programs, as we
discussed in Section 1.2 and accordingly assumed in Section 2.1,
we do not need the full power of static analysis [25]. PyTea unrolls
constant-bound loops (Assumption A2 in Section 2.1) and analyzes
their straight-line code version.

For the unknown-bound loops for datasets, PyTea analyzes the
loop body for just two cases with the aforementioned assumption
A3. One is for the loop with a fixed-sized regular minibatch of an
epoch. The other is for the loop with the residual minibatch. For
example, see code in Figure 5. For the third code box of Figure 5,
we can unroll the loop expression to 3 same expressions. If we do
not know the length of the dataset, such as the fourth code box of
Figure 5, we use assumption A3 and consider only two cases for
the two different sizes of minibatches.

Expression

E → n ∈ Z | T | F | x (variable)

| let x E E

| if E E E

| E bop E

| tensor-expr

bop → numeric-op | compare-op

numeric-op → + | - | * | · · ·
compare-op → < | = | · · ·
tensor-expr → mm E E

| reshape E E E

| readImage | · · ·

Figure 7: Abstract syntax of PyTea IR.1

3 ANALYSIS STEPS
3.1 PyTea IR

1 0 1 0
1 1
0 0

03

2

4

1
1
1

Figure 8: A tensor that has shape (2, 3, 4). The rank of this
tensor is 3, and each dimension has size 2, 3, and 4.

As the first step of the analysis, the input Python code is trans-
lated into the kernel language, PyTea IR. See Figure 7. PyTorch
APIs are translated into tensor expressions that only define shape
transformations, which PyTea IR focuses on.

The second step of the analysis is to scan the PyTea IR code and
generate constraints.

3.2 Constraint generation
Constraints are the conditions required by a PyTorch application
so that it can be executed without any tensor shape error. For
example, two operands of a matrix multiplication operation must
share the same dimension. For each tensor operation (mm, reshape,
readImage, etc. of Figure 7), the shape of the input tensor must
obey the requirement of the corresponding operation.

Figure 9 shows the abstract syntax of the constraints. Value
expression represents the value of PyTea IR expressions, which can
1For the explanatory purpose, we did not include function calls and defini-
tions. See supplementary material for detailed definitions of PyTea IR. Currently,
we implemented 34 basic tensor expressions, and every other PyTorch API has
been constructed with the basic expressions. The basic expressions are as fol-
lowing: Torch.__init__, Torch.__getitem__, isSameShape, scalar, identity,
broadcast, matmul, mm, bmm, item, repeat, expand, expand_as, transpose, reduce,
topk, view, conv2d, conv_transpose2d, pool2d, batchnorm2d, cross_entropy, cat,
stack, unsqueeze, squeeze, diag, flatten, narrow, pixel_shuffle, layer_norm,
pad, adaptive, interpolate.

A Static Analyzer for Detecting Tensor Shape Errors in Deep Neural Network Training Code

Constraint
𝑐 → 𝑐 ∧ 𝑐

| 𝑐 ∨ 𝑐

| ¬ 𝑐

| 𝑒𝑏

| 𝑒 = 𝑒

| 𝑒𝑛 < 𝑒𝑛

| ∀𝛼𝑛 ∈ [𝑒𝑛, 𝑒𝑛] .𝑐 (𝑐 is true forall integer 𝛼𝑛
in the interval)

Value Expr
𝑒 → 𝑒𝑠 | 𝑒𝑛 | 𝑒𝑏 (shape, number, or boolean)

Shape Expr
𝑒𝑠 → (𝑒𝑛, · · · ,𝑒𝑛) (tensor shape)

| 𝛼𝑠 (unknown shape)
| 𝑒𝑠[𝑒𝑛:𝑒𝑛] (shape slicing)
| 𝑒𝑠@ 𝑒𝑠 (shape concat)

Number Expr
𝑒𝑛 → 𝑛 (const number)

| 𝛼𝑛 (unknown number)
| 𝑒𝑛 bop 𝑒𝑛 (binary operator)
| rank (𝑒𝑠) (rank of shape)
| 𝑒𝑠[𝑒𝑛] (𝑒𝑛-th dimension of shape 𝑒𝑠)
| ∏

𝑒𝑠 (number of elements in
tensor of shape 𝑒𝑠)

bop → + | - | * | · · ·
Boolean Expr
𝑒𝑏 → True | False

| 𝛼𝑏 (unknown boolean)
| 𝑒𝑏 ∧ 𝑒𝑏 (conjunction)
| 𝑒𝑏 ∨ 𝑒𝑏 (disjuction)
| ¬ 𝑒𝑏 (negation)
| 𝑒 = 𝑒 (equality)
| 𝑒𝑛 < 𝑒𝑛 (less than)

Figure 9: Abstract syntax of constraints.

be used inside shape constraints.When PyTea analyzes a PyTea IR, it
traces tensor shapes and primitive values of Python and constructs
symbolic value expressions. Shape expression represents the shape
of tensors, which is basically a tuple of integers (𝑒𝑛, . . . , 𝑒𝑛). Figure 8
shows an example of a tensor with a shape (2, 3, 4). Each integer is
a dimension size. We call the number of dimensions as a rank of a
shape. We can slice (𝑒𝑠[𝑒𝑛:𝑒𝑛]) a shape expression or concatenate
(𝑒𝑠@ 𝑒𝑠) two shape expressions. For example, suppose a PyTea IR
variable t has shape (2,3,4). Expression t[0], which means the
first sub-tensor of t along the first axis, can be represented inside
constraints as (2,3,4)[1:rank(t)], or simply (3,4). In case of
expression t’s shape is unknown(𝛼𝑠), the shape of a sub-tensor
t[0] will be represented as 𝛼𝑠[1:rank(𝛼𝑠)].

3.2.1 Constraint generation rules for PyTea IR. To capture Python
semantics and PyTorch shape transformations, PyTea follows the
static semantics (𝜎 ⊢ 𝐸 : 𝑒,𝐶) of PyTea IR. Judgment (𝜎 ⊢ 𝐸 : 𝑒,𝐶)
means that the PyTea IR expression E is statically approximated
by a symbolic value expression 𝑒 under environment 𝜎 in case
the constraint set C (⊆ Constraint) is satisfied. The environment

𝜎 (∈ Var
fin
→ Value Expr) is a finite table that maps variables to

symbolic value expressions.
The introduction of constraints happens for branch expressions

or PyTorch APIs (See Section 3.2.2). The other expressions will
collect constraints from their subexpressions. For example, for an
add expression (E1+E2), see:

𝜎 ⊢ E1 : 𝑒𝑛,C1 𝜎 ⊢ E2 : e′𝑛,C2
𝜎 ⊢ E1+E2 : e𝑛+ e′𝑛,C1 ∪ C2

The result value is symbolically (𝑒𝑛+ 𝑒′𝑛) where 𝑒𝑛 and 𝑒′𝑛 are sym-
bolic results of 𝐸1 and 𝐸2 respectively. The result constraint set will
be a union of the result constraint sets of E1 and E2.

Every symbolic variable originates from external input, e.g., ran-
dom function or a dataset. Every expression in the constraints is
constructed by these variables and constant values.

3.2.2 Constraint types. In order to help the constraint resolution
engine Z3 come up with a sensible counter-example that violates
the derived constraints, we classify the constraints into two exclu-
sive classes: soft and hard constraints. For Z3 to generate counter-
examples, soft constraints can be violated, while hard constraints
should not. Thus hard constraints are, for example, those from
branch conditions or about the value range of the input. See Fig-
ure 5 again. Python built-in random.randint function generates
an unknown random variable within a given range [0, 1]. We
mark that bound constraint as a hard constraint. On the other hand,
torch.mm API demands that two input tensors have to be rank-2
(𝑥,𝑦) tensor and the second dimension (𝑦-coordinate) of the first
tensor have to be equal to the first dimension (𝑥-coordinate) of the
second tensor. This condition can be violated under the shape of
the inputs, hence we mark it as a soft constraint.

Hard constraint generation. Hard constraints are those for inputs
and branch conditions. Input conditions restrict the initial ranges
of each input. Branch conditions split each path into two.

Consider the following rule.

𝑐1 = (1 ≤ 𝛼𝑛 ≤ 4) (𝑛𝑒𝑤 𝛼𝑛)
𝑐2 = (0 < 𝛼 ′𝑛) (𝑛𝑒𝑤 𝛼 ′𝑛)
𝑐3 = (0 < 𝛼 ′′𝑛) (𝑛𝑒𝑤 𝛼 ′′𝑛)
𝑒𝑠 = (𝛼𝑛,𝛼

′
𝑛,𝛼

′′
𝑛)

𝜎 ⊢ readImage : 𝑒𝑠 , {𝑐1, 𝑐2, 𝑐3}
The readImage API is an image fetching API that creates a new
3-rank tensor which represents color channels, height, and width.
The range of color channels is from 1 to 4, i.e., monochrome to
RGBA, hence the constraint 𝑐1 in the above rule. The symbolic
value is a tensor of shape (𝛼𝑛, 𝛼 ′𝑛, 𝛼 ′′𝑛).

As another case, consider the following rule.

𝜎 ⊢ 𝐸1 : 𝑒1,𝐶1 𝜎 ⊢ 𝐸2 : 𝑒2,𝐶2
𝑐 = (𝑒1 ≤ 𝛼𝑛 ≤ 𝑒2) (𝑛𝑒𝑤 𝛼𝑛)
𝜎 ⊢ randInt E1 E2 : 𝛼𝑛,C1 ∪ C2 ∪ {𝑐}

Jhoo, et al.

The randInt API generates a new random variable which is bound
to given two numbers. This expression is used from the Python API
random.randint.

For branching case, see below:

𝜎 ⊢ 𝐸1 : 𝑒𝑏 ,𝐶1 𝜎 ⊢ 𝐸2 : 𝑒,𝐶2

𝜎 ⊢ if E1 E2 E3 : 𝑒,C1 ∪ C2 ∪ {𝑒𝑏 }

𝜎 ⊢ 𝐸1 : 𝑒𝑏 ,𝐶1 𝜎 ⊢ 𝐸3 : 𝑒,𝐶3

𝜎 ⊢ if E1 E2 E3 : 𝑒,C1 ∪ C3 ∪ {¬𝑒𝑏 }
The if expression creates two paths depending on the branch
condition 𝑒𝑏 . If the branch condition can be evaluated to a constant
boolean, we can safely drop one branch.

Soft constraint generation. Soft constraints are the conditions
with which PyTorch APIs must comply for them to run without a
shape error. For instance, two operands of a matrix multiplication
have to share the samemiddle dimension, and the reshape operation
requires that the number of elements of the input tensor must be
matched with the number of elements of the target shape. Each
PyTorch API holds unique requirements of input conditions, and
PyTea collects these requirements as soft constraints.

Following three rules, for example, PyTea collects such con-
straints from three representative APIs (mm, reshape and
transpose):

𝜎 ⊢ E1 : 𝑒𝑠 ,C1 𝜎 ⊢ E2 : 𝑒′𝑠 ,C2
rank(𝑒𝑠) = rank(𝑒′𝑠) = 2

𝑒′′𝑠 = (𝑒𝑠[0], 𝑒′𝑠[1]) 𝑐 = (𝑒𝑠[1] = 𝑒′𝑠[0])
𝜎 ⊢ mm E1 E2 : 𝑒′′𝑠 ,C1 ∪ C2 ∪ {𝑐}

The mmAPI calculates amatrixmultiplication of two 2-rankmatrices.
The second dimension of the first matrix must be equal to the first
dimension of the second matrix following the basic rules of linear
algebra.

The reshape API redefines the shape of a tensor. Reshaping a
tensor does not change or drop the value of a tensor, so the target
shape must have the exactly same number of values as the original
shape (

∏
𝑒𝑠 =

∏
𝑒′𝑠):

𝜎 ⊢ E1 : 𝑒𝑠 ,C1 𝜎 ⊢ E2 : 𝑒𝑛,C2
𝜎 ⊢ E3 : 𝑒′𝑛,C3 𝑒′𝑠 = (𝑒𝑛,𝑒

′
𝑛)

𝑐 = (0 < 𝑒𝑛) ∧ (0 < 𝑒′𝑛) ∧ (∏ 𝑒𝑠 =
∏

𝑒′𝑠)
𝜎 ⊢ reshape E1 E2 E3 : 𝑒′𝑠 ,C1 ∪ C2 ∪ C3 ∪ {𝑐}

The transposeAPI swaps two dimensions of the tensor E1 along
the E2-axis and E3-axis. Unlike the normal 2-rank matrix transposi-
tion, transpose slices a tensor with (E2, E3)-plane and transposes
each matrix on each cross-section:

𝜎 ⊢ E1 : 𝑒𝑠 ,C1 𝜎 ⊢ E2 : 𝑒𝑛,C2 𝜎 ⊢ E3 : 𝑒′𝑛,C3
𝑒1 = 𝑒𝑠[0:𝑒𝑛] @ (𝑒𝑠[𝑒

′
𝑛]) 𝑒2 = 𝑒𝑠[𝑒𝑛 + 1:𝑒′𝑛] @ (𝑒𝑠[𝑒𝑛])

𝑒′𝑠 = 𝑒1 @ 𝑒2 @ 𝑒𝑠[𝑒
′
𝑛 + 1:rank(𝑒𝑠)]

𝑐 = (0 ≤ 𝑒𝑛 < 𝑒′𝑛 < rank(𝑒𝑠))
𝜎 ⊢ transpose E1 E2 E3 : 𝑒′𝑠 ,C1 ∪ C2 ∪ C3 ∪ {𝑐}

From this rule, we only consider the shape of the result, not the
movement of the value inside the tensor.

Algorithm 1: Offline Constraint Check with SMT Solver
Input: 𝐻, 𝑆 - logical conjunctions of hard, and soft

constraint sets
Output: valid, invalid, dontknow, or unreachable
Function analyze(𝐻, 𝑆):

if checkSat(𝐻) = unsat then
return unreachable

else if 𝑆 = ∅ then
return valid

𝑣 = checkSat(¬(𝐻 → 𝑆))
if 𝑣 = unsat then

return valid
else if 𝑣 = sat then

return invalid
else return dontknow

3.2.3 Handling path explosion. Splitting execution paths whenever
the analyzer encounters a branch can make the analysis cost grow
exponentially. We can ignore some of them using the online con-
straint check, but we cannot for branches that use run-time input
values.

However, we can still avoid path split if both paths behave iden-
tically in terms of tensor shape. The conservative conditions are as
follows:

(1) Constraints collected from each path are not dependent on
the branch condition, and

(2) Each path has no global side-effect, and
(3) Two paths’ result symbolic values are the same.

PyTea checks the above conditions locally, within the boundary
of the let expression containing each branch. When PyTea cannot
statically decide on any of the three conditions, it safely assumes
the conditions do not hold.

Most branches in PyTorch neural network blocks satisfy the
above conditions. Typically, network blocks should result in a tensor
with a fixed shape that matches with a requirement of the next
block or the training target tensor. Those blocks’ feed-forward path
will be translated into nested let blocks with branches that return
the same-shaped tensor.

3.3 Constraint check
3.3.1 Online constraint check. To reduce the number of constraints
and paths, our analyzer eagerly simplifies the symbolic expressions
and constraints with primitive arithmetics and comparisons. By our
eager, online constraint check, the ranges of each symbol can some-
times be known and be used to judge the subsequent constraints.
If a branch condition can be simplified into constant true or false,
we can trace only a single branch without splitting the path. If a
constraint can be simplified to constant false, we can immediately
report that the path is unsafe.

3.3.2 Offline Constraint check. PyTea feeds the collected constraints
of each path to Z3. Algorithm 1 describes how we classify the Z3’s
result. The final result of PyTea analyzer can be divided into four
cases:

A Static Analyzer for Detecting Tensor Shape Errors in Deep Neural Network Training Code

Figure 10: Test result of PyTea command-line tool.

• Valid: Soft constraints are always satisfied under the hard
constraints. It guarantees that shape error will not occur
from this path.

• Invalid: A possible shape error is detected. There is a coun-
terexample that makes soft constraints false under the hard
constraints. We also report the generation position of the
first broken constraint.

• Don’t know: Z3 failed to decide whether constraints are
satisfiable or not.

• Unreachable: There is a conflict between hard constraints
in this path. In other words, it is impossible to reach this
path under the given conditions. This can happen if a path
had passed two contradicted branches.

If every path results in either unreachable or valid path, we can
conclude that the input program has no tensor shape error.

4 EVALUATION
Our experiments show PyTea’s practical performance for real-world
applications. To see the practicality of PyTea, we have collected
several complete PyTorch applications and shape-related PyTorch
bugs. First, we analyzed the official PyTorch example projects from
GitHub repository pytorch/examples[5]. This repository consists
11 complete PyTorch applications about major machine learning
tasks from Generative Adversarial Network (GAN) [24] to Natu-
ral Language Processing. We also collected some PyTorch shape
mismatch errors from StackOverflow and ran PyTea to statically
detect them with PyTea. Finally, we conducted case analyses of
several fully-functional, hand-made PyTorch applications such as
Stochastic ResNet [21].

Experiment Settings. PyTea analyzer is written in mainly Type-
Script [2], and communicates with Python scripts to run Z3.We also
used Pyright [6] to parse and track Python syntax. The experiments
were conducted on R7 5800X CPU, node.js 16.0.0 with TypeScript
4.2.4, and Python 3.8.8 with Z3Py 4.8.10.0. We fixed the epoch size
to 1 from the command-line arguments, but used default values for
the other settings. We measured the total elapsed time from the

cold boot to the termination of PyTea. The full options and codes
are written in the supplementary materials.

PyTea command-line tool. Figure 10 shows an example snapshot
of the analysis result of the PyTea command-line tool. It has ana-
lyzed one of the PyTorch example projects and prints the result of
each phase of PyTea. It first prints out the online constraint check
results and categorizes each path into three cases, potential success,
potential unreachable, and immediate fail. The last one indicates
that the online checker has found a constraint that can be false from
that path. The potential unreachable path is the path which the
online checker has found a false constraint, but there are certain
unresolved branch conditions. That path will be checked at the
next phase, and PyTea will examine whether the path has conflicted
constraints only within the hard constraint set, which means that
the path is unreachable from the beginning.

From the second step, PyTea delivers the collected constraint
set of each path to Z3 solver and runs the offline constraint checks.
The offline check will report the first conflicted constraint and its
position of creation, i.e., the exact tensor expression or PyTorch
API that causes an error. If the solver does not found any conflicted
constraint, PyTea concludes that all the paths are valid, hence no
tensor shape error is possible.

4.1 Results
4.1.1 PyTea for PyTorch Examples. For the experiment, we pass
each project twice to the analyzer. For the first pass, PyTea analyzed
the main code unmodified, and we check that PyTea does not inform
false positives. Then, we injected artificial shape errors, which we
subtract one from the first dimension of the target tensor, right
before the neural network’s loss calculation.

This simple method is decided on purpose. From this experiment,
we focused on the speed of PyTea which shows the practicallity
in order to be integrated to the code editor such as VSCode. This
configuration can check the analysis time of the main network,
and also confirm that PyTea tracks the tensor operations from the
main network thoroughly, and we check PyTea does not report
false negative results.

Jhoo, et al.

Table 1: Analysis result of pytorch/examples code repository. The lines of library APIs encapsulated with the analyzer were
counted separately. ◦: Analysis succeeded and found injected errors, △: Analysis succeeded but requires a modification of the
main code (e.g., provide explicit input tensor), ×: Failed to analyze.

Network LOC (main + lib) PyTea Hattori et al. [20] Total time (s)

dcgan 3714 (214 + 3500) ◦ × 1.75
fast_neural_style 4394 (338 + 4056) ◦ × 2.40
imagenet 3820 (320 + 3500) ◦ × 2.40
mnist 3607 (116 + 3491) ◦ × 1.59
mnist_hogwild 3620 (129 + 3491) ◦ △ 1.94
reinforcement_learning 180 (180 + -) × × -
super_resolution 3886 (193 + 3693) △ △ 1.57
snli 223 (223 + -) × × -
time_sequence_prediction 3333 (88 + 3245) △ × 1.88
vae 3593 (102 + 3491) ◦ △ 1.70
word_language_model 3278 (361 + 2912) △ × 1.81

Table 2: Analysis result of the StackOverflow questions. The
numbers in parenthesis denote the URL id of each question.

Question PyTea Hattori et al. [20]

Case 1 (66995380) ◦ ×
Case 2 (60121107) ◦ ×
Case 3 (55124407) ◦ ×
Case 4 (62157890) ◦ ×
Case 5 (59108988) ◦ ×
Case 6 (57534072) ◦ ×

We have compared PyTea against another PyTorch analyzer of
Hattori et al. [20]. Table 1 shows the overall results. Among the
11 projects, PyTea successfully analyzed 6 projects without any
modification of the original source code. For three projects with a
complex data preprocessing stage, PyTea needs a bypass (i.e., code
modification) of that stage to infer the shapes of input tensors. PyTea
has also succeeded in finding these injected errors. As these results
show, PyTea is quick and effective enough to be integrated into code
editors. Meanwhile, Hattori et al.’s analyzer failed for almost all
benchmarks. Furthermore, since their semi-static approach requires
an explicit shape of the input tensor, we needed to feed them an
exact network model and input tensors to compare its performance
with PyTea.

Although we have aimed to analyze the codes without any mod-
ification, two projects are heavily dependent on third-party data
managing libraries like OpenAI-Gym [3]. Because, at the moment,
we are focusing on the analysis of PyTorch-centered applications,
we decided not to support those libraries for now. Supporting more
libraries is straightforward and is our future work.

4.1.2 PyTea for StackOverflow questions. To show that PyTea can
identify yet another set of real-world shape mismatches, we col-
lected some PyTorch shape errors from StackOverflow questions.
Recent TensorFlow analyzers [22, 26] used a TensorFlow error
dataset collected by Zhang et al. [27], but we manually gathered Py-
Torch shapemismatch cases rather than using their dataset, because

1 class LSTM(nn.Module):

2 def __init__(self , ...):

3 # 7 lines ...

4 def forward(self , tokens):

5 # 5 lines ...

6 return out_scores

7

8 model = LSTM(embedding_matrix=np.zeros ((1181 , 100)))

9 loss_function = nn.NLLLoss ()

10 optimizer = optim.Adam(model.parameters ())

11

12 ## CUSTOM INPUT

13 input = torch.ones (256, 4, dtype=torch.long)

14 target = torch.ones (256, 4, dtype=torch.long)

15 output = model(input)

16

17 ## ORIGINAL

18 # output: [256 x 4 x 1181], target: [256 x 4]

19 # SHAPE MISMATCH: [256 x 1181] != [256 x 4]

20 loss = loss_function(output , target)

21

22 ## FIXED

23 # output: [1024 x 1181], target: [1024]

24 loss = loss_function(output.reshape (256*4 , 1181),

target.reshape (256*4))

Figure 11: Example code of StackOverflow question. (Case 2)

of the fundamental difference of the structures between Tensor-
Flow and PyTorch.We also considered porting the TensorFlow error
dataset into PyTorch codes, but we concluded that the ported codes
are fairly old and artificial and do not reflect the standard method
to build a PyTorch application.

Table 2 gives the analysis results of the 6 questions that we have
collected. PyTea could detect every shape mismatch case from those
questions. Following the analysis result, we could find the exact
error positions and fix the shape mismatch cases. For example, the
main code (Figure 11) of Case 2 does not satisfy the shape conditions
for the inputs of NLLLoss (line 9). The NLLLoss module requires
that the shape of the first input tensor without the second dimension
is equal to the shape of the second input tensor. PyTea found out
that NLLLoss could generate a shape error from our experiment.

https://stackoverflow.com/q/66995380
https://stackoverflow.com/q/60121107
https://stackoverflow.com/q/55124407
https://stackoverflow.com/q/62157890
https://stackoverflow.com/q/59108988
https://stackoverflow.com/q/57534072

A Static Analyzer for Detecting Tensor Shape Errors in Deep Neural Network Training Code

1 def load_image(filename , size=None , scale=None):

2 # POTENTIAL ERROR: channel size can be 1.

3 img = Image.open(filename)

4 # img = Image.open(filename).convert('RGB ')

5 # ...

6 return img

Figure 12: Insufficient preprocssing of image file.

1 def forward(self , x):

2 residual = x

3

4 if self.training:

5 # sample random float value

6 sample = self.m.sample ().item()

7

8 ### PATH EXPLOSION

9 if sample > 0:

10 out = self.conv1(x)

11 out = self.bn1(out)

12 out = self.relu1(out)

13 out = self.conv2(out)

14 out = self.bn2(out)

15

16 if self.downsample is not None:

17 residual = self.downsample(x)

18 out = out + residual

19 else:

20 if self.downsample is not None:

21 residual = self.downsample(x)

22 out = residual

23 # ...

24

25 out = self.relu2(out)

26 return out

Figure 13: Path explosion in Stochastic ResNet block.

We then fixed the code according to the StackOverflow answer, and
PyTea checked that every path became valid.

4.2 Discovered Errors in PyTorch Applications
We applied PyTea to several realistic PyTorch applications which
contain potential shape errors or path explosion. PyTea-found shape
errors include the typical type of shape errors that we introduced
at Section 1.3. The complete projects and experiment scripts from
this section will be in the supplementary material.

4.2.1 Detecting insufficient data preprocessing. We found a poten-
tial error at the data preprocessing stage from fast_neural_style
application of pytorch/examples repository. As shown in Figure 12,
Image.open does not guarantee the loaded image has channel 3,
i.e., RGB image. Therefore, any training or inference stage with
a monochrome image will fail if we miss the channel converting
method like line 4. This error was remained from the initial version
and was fixed by the latest commit (a3f28a2) of the preprocessing
script.

4.2.2 Handling path explosion. For a neural network model which
contains a runtime path-explosion, PyTea analyzed it without a

1 class NTXentLoss(torch.nn.Module):

2 def __init__(self , batch_size , temperature):

3 super(NTXentLoss , self).__init__ ()

4 self.batch_size = batch_size

5 # ...

6

7 def forward(self , zis , zjs):

8 batch = self.batch_size

9 repr = torch.cat([zjs , zis], dim=0)

10 sim = self.similarity_function(repr)

11

12 ## zis: [B x N], sim: [2B x 2B]

13 ## CONSTRAINT: -sim.shape [0] <= b <= sim.shape [0]

14 l_pos = torch.diag(sim , b)

15

16 # ...

17 diag = torch.eye(2 * b)

18 l1 = torch.diag(torch.ones(b), -b)

19 l2 = torch.diag(torch.ones(b), b)

20 mask = diag + l1 + l2

21 mask = (1 - mask).type(torch.bool)

22 # 'mask' tensor has (4b^2 - 4b) True values.

23

24 negatives = sim[mask].view(2 * b, -1)

25 # shape of 'negatives ': (2b, 2b - 2)

26 # ...

27

28 # ...

29 train_loader = DataLoader(

30 train_dataset ,

31 batch_size =256,

32 # drop_last=True , # ERROR

33)

34 losses = train(net , train_loader)

Figure 14: Shape inference which requires the exact values
of a tensor.

timeout. The stochastic-resnet example uses several deep learn-
ing techniques, mainly stochastic depth training [21]. See Fig-
ure 13. From this application, the building block of the network
contains runtime branches (line 9) that can cause a path explo-
sion. PyTea’s path handling algorithm can successfully prune those
branches and finishes without timeout. (Caveat: the overall data
handling is somewhat hard to follow; we did not automatically
reduce the repeat count of the main training loop. We explicitly
reduced the length of the dataset (CIFAR-10) with a configuration
file (pyteaconfig.json), and without modifying the code itself.)

4.2.3 Handling both regular and residual batch sizes in the training
loop. PyTea considers a residual minibatch in the training loop
which leads to a shape error, as we discussed in Section 2. We
simplified the SimCLR [7, 12] application to a single PyTorch-only
script. From line 4 of Figure 14, the main network class NTXentLoss
takes an exact batch size to initialize itself. So if we omit drop_last
parameter that removes the last batch at line 32, the last residual
minibatch will lead to a crash if the total data size cannot be divided
into the batch size. PyTea finds that the inequality between two
batch sizes from line 14 of Figure 14 generates a shape error.

https://github.com/pytorch/examples/commit/a3f28a26851867b314f4471ec6ca1c2c048217f1

Jhoo, et al.

4.3 Limitation of PyTea
The main focus of PyTea is the detection of shape errors, so it does
not perform general value analysis such as tracking the value of
the tensor or array index out-of-bound exception.

If a shape of a tensor is dependent on the value of the other
tensor, PyTea can miss a shape error. For instance, the viewmethod
at line 18 of Figure 14 requires that the element count of an in-
put tensor is divisible by 2𝑏. Tensor masking by a boolean tensor
(similarity_matrix[mask]) returns a 1-D tensor whose length is
equal to the number of True of the masking tensor. Although lines
10 to 14 guarantee that the masking tensor has 4𝑏2 − 4𝑏 True, we
do not know the view API will succeed since we do not track the
exact value of a tensor.

5 RELATEDWORKS
There is only one work [20] of statically detecting shape mismatch
of PyTorch applications. Hattori et al. [20] presented a semi-static
analysis of PyTorch applications that requires explicit tensor inputs.
Because of the path-insensitive and semi-static approach, their tool
is premature to fully statically analyze real-world applications. As
shown in Table 1, the performance of their tool is impractical.

For TensorFlow applications, the latest static analyzer is Pythia
[22], following the same group’s previous work Ariadne [16]. Pythia
is dependent on the Doop framework[10, 18] for Java pointer anal-
ysis and the Datalog language. Since Pythia’s target is not Python,
their coverage of Python and TensorFlow is still insufficient to
handle real-world applications. For example, Pythia cannot ana-
lyze integer modular operation and tensor indexing and slicing, as
shown in Figure 15. ShapeFlow [26] is a tester, a dynamic analyzer
with fake TensorFlow libraries that only track shape transforma-
tions. Their dynamic approach achieved better performance and
coverage than Ariadne and Pythia, but it requires a reduced dummy
dataset to run their tool. It cannot detect a possibility of shape
mismatch caused by an untested input dataset.

There are several works to solve the shapemismatch problems[14,
16, 20, 22, 26], but they all have fundamental limitations to analyze
PyTorch machine learning applications, such as the lack of support
for handling external data, branches, and loops. Also, most of them
work on TensorFlow applications.

Static analyses for Python programs have also been reported [14,
17]. Notably, Cruz-Camacho’s thesis[14] contains the shape analysis
of NumPy[19] array operators. However, their coverage of Python
syntax is restricted that custom function and class declaration are
not supported. PyExZ3[9] is a value analyzer for Python language
that implemented dynamic symbolic executor with Z3 backend. To
port it for a shape mismatch problem needs a sizeable overhaul.

6 CONCLUSION AND SIGNIFICANCE
We have developed an automatic static analyzer PyTea that detects
tensor-shape mismatch errors in PyTorch’s deep neural network
code. Our experiments have shown that PyTea’s performance is
practical in reality.

Significance. The tensor-shape mismatch error is a critical bug
in deep neural net training code, yet hard to statically detect by
programmers. We presented a solution to this problem: automatic

static analyzer PyTea whose performance is realistic. The analysis
design strikes a balance between the cost, accuracy, and coverage
with a focus on the typical program structure of PyTorch deep
neural net code base. PyTea is classified as a bug-finder, not a verifier:
PyTea can have false positives or false negatives in principle, yet
we observed no such cases in our experiments. PyTea is ready for
public release.

1 import tensorflow as tf

2

3 one = 1

4 four = 1

5 if one == 1:

6 four = 4

7

8 target = tf.ones((4, 5))

9

10 with tf.Session () as sess:

11 t0 = tf.ones((3, 4)) # [3 x 4] * [4 x 5]

12 p0 = tf.matmul(t0, target) # Pass: Correct

13

14 t1 = tf.ones((3, 5)) # [3 x 5] * [4 x 5]

15 p1 = tf.matmul(t1, target) # Error: Correct

16

17 t2 = tf.ones((3, 5 % 2)) # [3 x 2] * [4 x 5]

18 p2 = tf.matmul(t2, target) # Pass: False Negative

19

20 t3 = tf.ones((3, 5))[0] # [5] * [4 x 5]

21 p3 = tf.matmul(t3, target) # Pass: False Negative

22

23 t4 = tf.ones((3, 5))[0:1] # [1 x 5] * [4 x 5]

24 p4 = tf.matmul(t4, target) # Pass: False Negative

25

26 t5 = tf.ones((3, four)) # [3 x 4] * [4 x 5]

27 p5 = tf.matmul(t5, target) # Error: False Positive

28 # ...

Figure 15: Basic tensor operations that Pythia [22] fail to
analyze correctly.

ACKNOWLEDGMENT
This work was partially supported by Korea Institute for Informa-
tion & Communications Technology Promotion (No.2021-0-00059),
NAVER CLOVA (No. 0536-20200005) and Supreme Prosecutors’ Of-
fice of the Republic of Korea (No. SPO2020A1103DIGITALB, No.
SPO2021A1103DIGITALB). This work was also supported by BK21
FOUR Intelligence Computing(Dept. of Computer Science and En-
gineering, SNU) funded by National Research Foundation of Ko-
rea(NRF) (4199990214639).

REFERENCES
[1] 2010. Pillow. Retrieved April 26, 2021 from https://github.com/python-pillow/

Pillow
[2] 2012. TypeScript. Retrieved April 26, 2021 from https://www.typescriptlang.org/
[3] 2016. OpenAI Gym. Retrieved April 26, 2021 from https://github.com/openai/gym
[4] 2016. Torchvision. Retrieved April 26, 2021 from https://github.com/pytorch/

vision
[5] 2017. pytorch/examples. Retrieved April 2, 2021 from https://github.com/pytorch/

examples
[6] 2018. Pyright. Retrieved December 16, 2020 from https://github.com/microsoft/

pyright
[7] 2020. sthalles/SimCLR. Retrieved May 1, 2020 from https://github.com/sthalles/

SimCLR/tree/e8a690ae4f4359528cfba6f270a9226e3733b7fa

https://github.com/python-pillow/Pillow
https://github.com/python-pillow/Pillow
https://www.typescriptlang.org/
https://github.com/openai/gym
https://github.com/pytorch/vision
https://github.com/pytorch/vision
https://github.com/pytorch/examples
https://github.com/pytorch/examples
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright
https://github.com/sthalles/SimCLR/tree/e8a690ae4f4359528cfba6f270a9226e3733b7fa
https://github.com/sthalles/SimCLR/tree/e8a690ae4f4359528cfba6f270a9226e3733b7fa

A Static Analyzer for Detecting Tensor Shape Errors in Deep Neural Network Training Code

[8] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[9] Thomas Ball and Jakub Daniel. 2015. Deconstructing Dynamic Symbolic Ex-
ecution (proceedings of the 2014 marktoberdorf summer school on depend-
able software systems engineering, the 2014 marktober summer school on
deop ed.). Technical Report MSR-TR-2015-95. https://www.microsoft.com/en-
us/research/publication/deconstructing-dynamic-symbolic-execution/

[10] Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Speci-
fication of Sophisticated Points-to Analyses. SIGPLAN Not. 44, 10 (Oct. 2009),
243–262. https://doi.org/10.1145/1639949.1640108

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
arXiv:2005.14165 [cs.CL] https://arxiv.org/abs/2005.14165 arXiv:2005.14165.

[12] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey E. Hinton. 2020.
A Simple Framework for Contrastive Learning of Visual Representations. CoRR
abs/2002.05709 (2020). arXiv:2002.05709 https://arxiv.org/abs/2002.05709

[13] François Chollet et al. 2015. Keras. https://keras.io.
[14] Elkin Cruz-Camacho. 2019. Static Analysis of Python Programs using Abstract In-

terpretation: An Application to Tensor Shape Analysis. Master’s thesis. Universidad
Nacional de Colombia - Sede Bogotá. http://bdigital.unal.edu.co/72620/

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver.
In Proceedings of the Theory and Practice of Software, 14th International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’08/ETAPS’08). Springer-Verlag, Budapest, Hungary, 337–340.

[16] Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna Reinen. 2018. Ariadne:
Analysis for Machine Learning Programs. In Proceedings of the 2nd ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages (MAPL
2018). Association for Computing Machinery, Philadelphia, PA, USA, 1–10. https:
//doi.org/10.1145/3211346.3211349

[17] Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. 2018. Static Value
Analysis of Python Programs by Abstract Interpretation. In 10th International
Symposium NASA Formal Methods (NFM 2018). Springer, Newport News, VA,
USA, 185–202. https://doi.org/10.1007/978-3-319-77935-5_14

[18] Neville Grech and Yannis Smaragdakis. 2017. P/Taint: Unified Points-to and Taint
Analysis, In 2017 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications. Proc. ACM Program. Lang.,
Article 102, 28 pages. https://doi.org/10.1145/3133926

[19] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[20] Momoko Hattori, Shimpei Sawada, Shinichiro Hamaji, Masahiro Sakai, and
Shunsuke Shimizu. 2020. Semi-Static Type, Shape, and Symbolic Shape Inference
for Dynamic Computation Graphs. In Proceedings of the 4th ACM SIGPLAN
International Workshop on Machine Learning and Programming Languages (MAPL
2020). Association for Computing Machinery, London, UK, 1119. https://doi.
org/10.1145/3394450.3397465

[21] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. 2016.
Deep Networks with Stochastic Depth. In 14th European Conference on Computer
Vision. Springer, Amsterdam, Netherlands, 646–661.

[22] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and
Yannis Smaragdakis. 2020. Static Analysis of Shape in TensorFlow Programs.
In 34th European Conference on Object-Oriented Programming (ECOOP 2020).
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 15:1–
15:29. https://doi.org/10.4230/LIPIcs.ECOOP.2020.15

[23] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep

Learning Library. In Advances in Neural Information Processing Systems 32. Cur-
ran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[24] Alec Radford, Luke Metz, and Soumith Chintala. 2016. Unsupervised Represen-
tation Learning with Deep Convolutional Generative Adversarial Networks. In
4th International Conference on Learning Representations. San Juan, Puerto Rico.
http://arxiv.org/abs/1511.06434

[25] Xavier Rival and Kwangkeun Yi. 2020. Introduction to Static Analysis: An Abstract
Interpretation Perspective. The MIT Press, Cambridge, MA, USA.

[26] Sahil Verma and Zhendong Su. 2020. ShapeFlow: Dynamic Shape Interpreter
for TensorFlow. arXiv:2011.13452 [cs.LG] https://arxiv.org/abs/2011.13452
arXiv:2011.13452.

[27] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An Empirical Study on TensorFlow Program Bugs. In Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2018). Association for Computing Machinery, Amsterdam, Netherlands,
129–140. https://doi.org/10.1145/3213846.3213866

[28] Barret Zoph and Quoc V. Le. 2017. Neural Architecture Search with Reinforce-
ment Learning. In 5th International Conference on Learning Representations. Open-
Review.net, Toulon, France. https://openreview.net/forum?id=r1Ue8Hcxg

https://www.tensorflow.org/
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/
https://www.microsoft.com/en-us/research/publication/deconstructing-dynamic-symbolic-execution/
https://doi.org/10.1145/1639949.1640108
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2002.05709
https://arxiv.org/abs/2002.05709
https://keras.io
http://bdigital.unal.edu.co/72620/
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1145/3211346.3211349
https://doi.org/10.1007/978-3-319-77935-5_14
https://doi.org/10.1145/3133926
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1145/3394450.3397465
https://doi.org/10.1145/3394450.3397465
https://doi.org/10.4230/LIPIcs.ECOOP.2020.15
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/1511.06434
https://arxiv.org/abs/2011.13452
https://arxiv.org/abs/2011.13452
https://doi.org/10.1145/3213846.3213866
https://openreview.net/forum?id=r1Ue8Hcxg

	Abstract
	1 Introduction
	1.1 Our Goal
	1.2 Structure of PyTorch Programs
	1.3 Tensor Shape Errors

	2 Overview of PyTea Analyzer
	2.1 Assumptions
	2.2 Handling path explosions
	2.3 Handling Loops

	3 Analysis Steps
	3.1 PyTea IR
	3.2 Constraint generation
	3.3 Constraint check

	4 Evaluation
	4.1 Results
	4.2 Discovered Errors in PyTorch Applications
	4.3 Limitation of PyTea

	5 Related Works
	6 Conclusion and Significance
	References

